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Abstract. The quantum Zeno effect (QZE) predicts a slow-down of the time development
of a system under rapidly repeated ideal measurements, and experimentally this was tested
for an ensemble of atoms using short laser pulses for non-selective state measurements. Here
we consider such pulses for selective measurements singée system. Each probe pulse

will cause a burst of fluorescence or no fluorescence. If the probe pulses were strictly ideal
measurements, the QZE would predict periods of fluorescence bursts alternating with periods of
no fluorescence (light and dark periods) which would become longer and longer with increasing
frequency of the measurements. The non-ideal character of the measurements is taken into
account by incorporating the laser pulses in the interaction, and this is used to determine the
corrections to the ideal case. In the limit, when the time, between the laser pulses goes to
zero, no freezing occurs but instead we show convergence to the familiar macroscopic light and
dark periods of the continuously driven Dehmelt system. An experiment of this type should be
feasible for a single atom or ion in a trap.

1. Introduction

The effect of an instantaneous measurement on a quantum mechanical system is usually
described by the projection postulate of von Neumann aindets§ according to which,
depending on the outcome of a measurement, the wavefunction of the system is projected
onto the respective eigenspaces of the observable under consideration. This is also called
reduction or collapse of the wavefunction under an ideal measurement; a more general
approach to measurements is taken in [4]. Using this concept and some fairly general
technical assumptions, Misra and Sudarshan [5] have investigated how a system is affected
by rapidly repeated ideal measurements at timespart. They found a slow-down of the
system’s time development and, in the limit — 0, a freezing of the state. This is called
the quantum Zeno effect (QZE). The basic reason for this is the fact that for short enough
times transition probabilities grow only quadratically with time, not linearly.

To test this effect, ltan@t al [6] performed an experiment with an ensemble of 5000
ions in a trap (see figure 1 for the relevant level structure, a V configuration). The time
development was given by a so-calledpulse of lengthT,, tuned to the 1-2 transition

t E-mail address: beige@theorie.physik.uni-goettingen.de
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§ The projection postulate as currently used has been formulatedidgrs [1]. For observables with degenerate
eigenvalues his formulation differs from that of von Neumann [2]. It has been pointed out to us by A Sudbury
(private communication) that in the first edition of his book Dirac [3] defines observations which cause minimal
disturbance and which correspond tader’s prescription; in later editions, however, this passage has been omitted.
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laser pulse
< 1f field, Qo

Figure 1. V system with (meta-) stable level two and Einstein coefficiagtfor level 3. Q2
and Q3 are the Rabi frequencies of the RF field and the probe laser, respectively.

frequency. An pulse, here a radio frequency (RF) pulse, transforms the initial gtate

into |2) at the end of the pulse, if no measurements are performed. Following a proposal
by Cook [7] the population of the lower level was measured—non-selectively and without
actually recording the results—in rapid succession through the fluorescence induced by very
short pulses of a strong probe laser which couple level one with an auxiliary third level. The
population at timel,, was then measured by a final pulse and recorded. The experimental
results were in good agreement with the predictions of the QZE.

The QZE and this experiment have not only aroused considerable interest in the literature
[8, 9], but the very relevance of the above experimental results for the QZE has given rise to
controversies. In particular the projection postulate and its applicability in this experiment
have been cast into doubt, and it was pointed out that the experiment could be understood
without recourse to the QZE by simply including the probe laser in the dynamics, e.g. in the
Bloch equations or in the Hamiltonian [9]. Since the Bloch equations describe the density
matrix of thecompleteensemble, including the probe pulse as an interaction in them gives,
however, no direct insight on how such a pulse acts on a single system.

In previous papers [10-12] we have therefore investigated how far a short laser pulse
realizes a selective measurement, i.e. on single systems, to which the projection postulate
can be applied. By means of the quantum jump approach (or Monte Carlo wavefunctions
or quantum trajectories) [13] and including the probe laser in the dynamics we showed
analytically that for a wide range of parameters such a short laser pulse acts, indeed, as
an effectivelevel measurement to which the usual projection postulate applies with high
accuracy. The corrections to the ideal reductions and their accumulation pudses were
calculated. Our conclusion was that the projection postulate is an excellent pragmatic tool for
a quick and intuitive understanding of the slow-down of the time evolution in experiments
of this type and that it gives a good physical insight. But it is only approximate, and a
more detailed analysis has to take the corrections into account.

The experiment of [6] deals with the effect of repeated non-selective measurements
on an ensemble of systems and with the associated slow-down in the time evolution of the
density matrix of the total ensemble. It suggests itself to perform a similar experiment with
a single atom (or ion) in a trap, though not only for the duration af pulse of the weak
driving field but instead for an arbitradpng time. This might be regarded as an analog
of the idealized situation of rapidly repeated measurements on a single system. As studied
in [5, 7], in the idealized situation the outcome of the measurements will form a stochastic
sequence, in this case a sequence of stdteand|2). The periods containing onlji)’s
and|2)’s will become increasingly long when the tinter between the ideal measurements
decreases, and in the limikr — 0 one would have a single infinite sequence|bfs
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or |2)’s, i.e. freezing. With short pulses of a probe laser, considered as measurements,
one would therefore expect periods of fluorescence bursts (light periods, corresponding to
periods of|1)’s) alternating with periods of no fluorescence (dark periods, corresponding to
periods of|2)’s). Decreasing the tim&: between the probe pulses should, in this picture,
make the light and dark periods longer.

The aim of this paper is to analyse how far this intuitive picture of the behaviour of
a single system is correct and to provide an understanding why the projection postulate
also works so well in this case. After a brief review of the ideal case we use our previous
results to calculate in section 3 the mean duration of the light and dark pefipdsnd
Tp, and compare them with the simple expression obtained by the projection postulate.
Our analysis will make it perfectly clear why the projection postulate gives such excellent
results for a wide range of parameters. If the tinsebetween the probe pulses becomes too
small, however, then the above simple picture breaks down. In section 4 we will explicitly
perform the limitAr — 0 and show that in contrast to the idealized csandTp remain
finite. Indeed, we show convergence to the same expressions as for the famous light and
dark periods of the continuously driven Dehmelt system, which are also known under the
name of ‘electron shelving’ [14]. In the last section we discuss our results.

2. Brief review of an ideal case

If one performs rapidly repeated ideal measurements of an observabléh discrete
eigenvalues on a single system at timessapart then the projection postulate predicts that
one will find the same value of in a row for some time, then another value for some
time, and so on. The length of these time intervals is stochastic, and their lengths increase
when At decreases. For an observablevith non-degenerate discrete eigenvalues this can
be seen as follows. For simplicity we make a domain assumption further below. For the
general treatment see [5].

Let |a) be a state vector arit), = |a)(a| the corresponding projector. Attimesr, ...,
with At = ;.1 — 1;, ideal measurements @, are performed, whose results are 1 or O,
with the system afterwards i) or the subspace orthogonal f@), respectively. This is
equivalent to asking whether the result of a measuremeat igr perpendicular t¢a), and
we denote the outcome and L instead of 1 and 0. We defiie, =1 —-P,. LetU(, 1)
be the time-development operator for the system. If, for initial st@teone has found:
in n successive measurements, the resulting state is, up to normalization, given by

hba(tna t0)> = ]P)aU(tnv tn—l)]P)a cee -PaU(tla tO)lw) (1)
which of course is proportional tfa), and the probabilityP, (z,, to; |v)) for this is

Pu(ty, 03 1) = 1Wa(ta, 10)) 112

L 2
= lalU (i1, )W) | [ HalU @, -v)la) 2. @
i=2

If one has foundL in n successive measurements the state is

[WL(tn, 10)) =PLU (s ta))PL - - PLU (12, 00) [Yr) 3)

which in general is no longer proportional to a fixed vector, and the probability for this is
given by

P (ty, 105 1¥)) = 11V 1 (ta, t0)) 11
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To show that, for fixed = nAt, P,(t,10) — 1|{a|¥)|? for At — 0 we assume for
simplicity that|a) is in the domain ofH. An expansion then gives [15]

(alU (1, ti-p)la)|® = 1 — Ar*[(a|H H|a) — (a|H|a)?] /h* + o(Ar?)
— g AP~ /R (1 4 o(Ar?))

4

where @Ar?) denotes terms which go to O faster tham’. The expressiofia|H H|a) is

to be interpreted afH|a)||?>. Equation (4) just states the well known fact that under the
above assumptions the transition probability framto an orthogonal state goes As? for
small At [16]. From equations (2) and (4) one now obtains for the probability

Pu(t, to; ) = e DALl Pl HI/R (1 4 o( A1) (a|U (11, 10)|9)]2 (5)

With n = #/ At the first and second factor in equation (5) go to 1 Agr— 0, and the last
to |(aly)|?.

Under the same conditions one can also show #at, ro; |v)) — 1||P.|v)|? for
At — 0. If P, were a one- or finite-dimensional projector this would follow as before,
but in the general case another argument is needed. Wjth= U(At, 0) one has from
equation (3)

Pt 103 1¥)) = Potiva, o 1¥) = | 1o (i, 1)1 = 14 = la) (@D Uni |1 (@i, 10)) 117

6
= (a|Ua/|¥r1 (i, t0)) (YL (i, 00)| UL, la). ©)
using |y (¢, to)) (YL (t;, to)| < U — |a)(a| one obtains
Py(t;, 10 1¥)) — PLtita, o3 |¥) < 1= [(a|Ua/la)]? @
= Ar®[(a|HH|a) — (a|H|a)?] /h? + o(Ar?)
by equation (4). Now one can estimate, with- nAt + o, t; = i At + to,
n—1
|PL(t t0; [¥)) — IPLIW) 1] <Z [P (tita, 103 |¥) — PLti, to; [¥))] ®)
i=1

+ | Pty t0: 1) — IIPLIY) %]

The sum is bounded by — 1) At? constant- (n — 1)o(At?), and forAr — O this vanishes,
as does the last term on the r.h.s. b= H(¢) time dependent, the same argument goes
through with minor modifications.

For |a) in the domain ofH and initial statey), this simple argument shows that for
rapidly repeated ideal measurementl®f= |a)(a| the results freeze, foAr — 0, to |a)
with probability |(a|v)|? and toP, |v) with the complementary probability. In particular,
if |v¥) = |a), one stays ifa) for At — 0.

2.1. Mean length of periods

For a single system one has as results of the measurement alternating random sequences of
a’'s and L’s (= not a) of the form

.dlaa...all ... la.... 9)

The length of am sequence is defined @ag x number ofa’s. Similarly for L. We assume
that|a) is not an eigenvector aff, since otherwise all measurements would give the same
result, either allk or all nota (). The initial state for am: sequence i$a) and for anL
sequence it is

lpr) =PLUAL O)a)/| - |l (10)
except at the beginning when it jig ).
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Starting with ana the probability to have exactly a's in a row,n > 1, but not more,
is by equation (1) (withyg = 0)
Pain = IPLU (AL, 00y (51, 0; |a)) |1? 1)
= Pa(tnflv O; |Cl>) - Pa(tnv 0; |Cl>)

and analogously

P = Pr(ty-1,0;[¢1)) — P10, 0; [91)). (12)

The mean duratiorf, and T, of these sequences for a single system is then, in obvious
notation,

Toi =) nAt[Py1(ty-1) = Pui(ty)]
! (13)
= Z At P, 1 (1).
n=0
From equation (2) one obtains the exact result
T.=Ar ) [{alU(Ar,0)la)
n=0 (14)
At
T 1- {alU(Ar, O)la)?’
With equation (4) one obtains
1 h?
N { (i) — {aliar T OO Atz} | 49

The second term in the brackets becomes negligible for smaglland 7, diverges for
At — 0. If |a) is in the domain ofH? then one can replace(ar") by O(A:"*1) where
the latter denotes terms of order at least .

To obtain an explicit expression f@f, we assume for simplicity that the Hilbert space
is finite-dimensional (or tha# is bounded). Then one has

P U(At, 0P, =P, [1 —iAtH/h — JAr2H? /R? + O(A1%)]P,

_ ]P)J_e—iAr]P’J_HIPJ_/}T—%AIZ[IMHZJPJ_—(IPJ_H]P’J_)Z]/EZPJ_(1 +o(Ard)). (16)
Then, by equation (3)
Pty 0 Y1) = (o [P e SRR CLHEDATD |y ) (14 O(AFR)). (17)
From this and from equation (13) one now obtains
T, = * (@] " |¢1) + O(AL). (18)
At P H?P, — (P, HP,)?

We note that ifia) is an eigenvector off then the denominators in equations (14) and (18)
vanish.

Example We consider a single system with two stable levels one and two. The system
is driven in resonance by a classical electromagnetic wave, e.g. in the RF range. In the
interaction picture and with the usual rotating-wave approximation the Hamiltonian is given
by

H = 50{|1)(2] + 12)(1]} (19)
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whereQ,, the so-called Rabi frequency, is proportional to the amplitude of the driving field
[17, 18]. The time-development operator is easily calculated as

Ul(t, to) = COS3(t — to) — iSiN 3Q(1 — 10){|1)(2] + [2)(1]}. (20)
From this one finds the transition probabilities

(21U, 0)[1)1* = (LU (¢, 0)[2)|* = sir? ;1. (21)

For smallz this is quadratic irr. If one now determines by repeated ideal measurements,
at times At apart, whether one finds the system in stdfeor |2) one obtains a random
sequence of the form

..21...12...21... (22)

similar to (9). The mean duratiofy and 7> of the subsequences of 1's and 2’s is given
by equation (14) with|a) replaced by|l) and |2), respectively, and one obtains with
equation (20)

h=Tp= o
T sitloar T QA

Note that7; = T, holds quite generally for a two-level system, as easily seen from
equation (14).

+ O(A?). (23)

3. Realistic case: light and dark periods

We now consider a single three-levélsystem as in figure 1 and assume the 1-2 transition
to be driven in resonance by classical electromagnetic RF radiation with Rabi freqency
and Hamiltonian as in equation (19).

We suppose that repeated measurements of level one are performed. Following [7, 6]
we assume that each measurement consists of a short laser (probe) pulse driving the 1-3
transition. When resonance fluorescence occurs then after the last photon emission at the
end of a probe pulse the system is|In, and when no resonance fluorescence occurs then
the system was taken by [7, 6] to be|R).

Experimentally one will then expect the following striking phenomenon. One will see
periods of fluorescence bursts alternating with dark periods, as in figure 2. The mean
duration of these light and dark periods should be giver?’by of equation (23), at least
approximately,

~ 4 7o~ 4
T Q2Ar P Qear

These periods should become longer and longer with decreasing\tirbetween the probe
pulses.

In how far the above probe pulses do indeed lead to measurements of levels 1 and 2 and
to state reduction has recently been discussed by us in [10-12] by means of the quantum
jump approach [13]. With regards to reduction, it was shown that at the end of a probe
pulse and a short transitory time the state of the system is given either by a density matrix
extremely close, but not identical tb) (1| if the system has emitted photons, or by a density
matrix very close td2) (2| if no photons were emitted. After the last photon emission during
a probe pulse the system is indeed in its ground state, but then it may acquire d2small
component until the end of the probe pulse; |Bs component will decay during a short
transitory time after the pulse. When no photons are emitted the finite duration of the probe

T, (24)
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I T I I I T I
| L LA R T P P P s T TP
0 5 10 15 20 25 30 35 40
(a) At:Tﬂ'/Q t[Tﬂ']

I T I I I T I
UM O
0 5 10 15 20 25 30 35 40
(b) AtZTﬂ/éL t[Tﬂ-]
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11
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(c) At = Tﬂ-/6 t [T.,r}

Figure 2. Figure 2. Stochastic alternating light and dark periods. The lines mark times when
the atom is found in statd) and emits a burst of lightT, = 7/ Q> is the length of ar pulse.

pulse is responsible for a small) component. Hence, there will be small deviations from
ideal measurements, which will lead to small corrections to the above results.

For a probe pulse to constitute an effective measurement its dutatiphas to satisfy
[10]

Aty > max{Azt, Ag/Q3). (25)
In addition to this one needs
QoAj Qo Qo
= —s K1 er= — k1 A= — K1 26
P Q% R 93 A A3 ( )
If the time Ar between two probe pulses satisfies
At > At and (QAN? > € (27)

one can directly employ the results of [11]. The first of these conditions ensures that the
component has vanished before the next pulse, the second that there are only two possible
atomic states at the end of a pulse. In case of no emission the pulse effectively projects the
system onto

- 0 —ie
0 __ p 2
pP_(iGp 1 )—I—O(e) (28)
in the |1) — |2) subspace, and in case of photon emission onto
. 1
PP = A2 1+ 290 + oA Ty A2
A%+ 203 iepAZ — Len2l 2
. : O(e”). 29
<—|epA§ + %EAQE epQZAtpAg +0(e) (29)

For arbitrary initial density matrix the probability for no photon emission during a probe
pulse is

Po(ATy; p) = p22 — €pQ22ATpp22 + 265 1M p12 — 2eg Reppz + O(€?).  (30)

Now let p be the (conditional) probability to hawe fluorescence during a pulse under
the condition that therbad been fluorescence during the preceding pulseqBye denote
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the probability to haveo fluorescence during a pulse under the condition that there had been
no fluorescence during the preceding pulse. In sheo@ndg are transition probabilities,

p :yes— no g : N0 — no. (32)

These are the same probabilities as for the transitions fiprafter a pulse tg52 after the
next pulse and fronp2 to 59, respectively. With

¢ = COSQ AL s = SiNQ At (32)
one has [11]
1 A2+ Q2 1 3A2Z + 202
=_(1- 2531 4 T ATy e 38
P=s C)Jrép{ ‘Az 202 T 2M e L og2
1 1 Q2
— QAT — —eas— 2 4+ O(€? 33
2% r"} 2N a2 o2 " (€ (33)
g = 3(140) — {25 + 3QATH(L+ )} + O(e?). (34)
It should be noted that for smal\¢
p = (22417 + O(e) (35)
g=1-p+0(e) (36)

and thatg # 1 — p to first order ine.
The probability for a period of exactly consecutive probe pulsesgith fluorescence
among all such light periods id — p)"~1p. The mean duratioff; of light periods is then

To =) (Atp+ Ann(1—p)"'p (37)
n=1
which gives
Aty + At
L= S0 (38)

Similarly one finds for the dark periods

T
D 1—g

(39)
Since 1- ¢ is close, but not equal, tp one hasT; ~ Tp but no longer equality. For the
parameters of [6] the difference is very small.

Inserting the approximate values pfandg from equations (35) and (36) one obtains

A+ A1 4

. 40
At Q3At (40)

T, ~ Tp
If the durationAt, of the probe pulse is much smaller than the tiebetween the pulses
this agrees extremely well with the result for ideal measurements obtained by the projection
postulate in equations (23) and (24) above.
It is not possible to take the limikz — 0 in equation (40) since for the above derivation
to be valid A has to satisfyAr > Az*. This limit will be studied in the next section, and
we will show that7; andTp do not grow indefinitely.
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4. The limit of vanishing distance between probe pulsesAt — 0

To perform the limitAz — 0 some extra steps are needed. For smalithe population
of level three does not vanish completely before the beginning of the next probe pulse.
Therefore, in case of fluorescence, one has no longer a good reductipntoand the
pulse cannot be regarded as affecting a measurement of levels one and two. In this case
the treatment of the last section has to be made more precise by incorporating the possibly
only partial decay of level three.

Right at the end of a probe pulse—without transient decay time—the system is, as
shown in [11], either in

0 —ie O
p° = (iép 1 —GR) + O(€?) (41)
0 —€R 0
in case of no photon emission, or in
P~ =7 5 5 —iepAS  AI0AT, er(A3+ QD) |+ O(d)
A3 + 293 + GpAgng‘L’p —iA3Q3 €R(A§ + Q%) Q%

(42)

in case of fluorescence, except possibly for fing pulse of a light period. If the second
condition in equation (27) is not satisfied iy then the state at the beginning of the first
pulse in a light period is very close t0°, and therefore the sta{g” after the first pulse
has to be calculated with initial state of the fopfi+ O(e). For such a state, however, one
has 1— Py = O(e), by equation (30), and then(€?) is replaced by Q) in equation (42)
for small Az. Thus, if the second condition in equation (27) does not hold the first pulse in
a light period has, in principle, to be treated differently from the rest.

The transition probabilities from equation (31) are now denoteptand g and are
given by

BT emaAsh 4 O(ed) (43)
g =q+0() (44)
with p andg as in equations (33) and (34) ard arbitrary. However, for the first pulse in

a light periodp is replaced byp + O(e). One sees that, fanr > Agl, P goes over into
p. Equation (37) is replaced by

[e¢]
T, = (Atp+ AD(p + O(€) + Y (AT + ADn(l— j+ O(e) (L — p)"~2p (45)
n=2
which gives
Aty + At
L=t (46)
p
up to terms of relative ordet. For Tp one obtains now
A At
T, = ST AL (47)
1-4

Now one performs the limins — 0 and obtains
AZ
M 5 = e, QAT + O(e?
a0 P T P2 P A%+ 203 ) (48)

lim ¢ =1— e,Q0A O(€).
fimyd =1~ 22t + O
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Inserting this into the expressions fdf and 7T gives, withe, = Q2A3/ Q§

: A%+ 202

lim 7, = 237 2% g2

At—0 QZAS (49)
Q3

lim Tp =
A1—0 Q5A3

up to terms of relative ordes/ Q2> At,.

First of all, the limits are finite, as physically expected. Furthermore, in the imit> 0
both driving fields are continuously on and in this case the existence of macroscopic light
and dark periods is well known under the name ‘electron shelving’ [14]. The mean duration
of these periods has been calculated [19] and the result is the same as in equation (49).
Thus, the continuously driven case is recovered in the limit— 0.

5. Conclusion

When applied to an ensemble of systems the QZE predicts a slow-down in the time-
development of the density matrix¢) under repeated ideal measurements. An experiment
to test this was performed by Itamb al [6] in which repeated state measurements were car-
ried out on a system with two stable levéls and|2). The measurements were implemented

by short laser pulses driving the transition from the ground gfiatéo an auxiliary rapidly
decaying level3). Occurrence or absence of fluorescence means a systenfilisan|2),
respectively. The experimental results indeed showed a slow-down of the time-development
of p(¢) in good agreement with the QZE. Subsequently it was pointed out [9] that this be-
haviour could be understood without recourse to any measurement theory. Indeed, one can
simply consider the probe laser as part of the dynamics and incorporate it in the Hamiltonian
or in the Bloch equations fop(z), never speaking of measurements. Using the quantum
jump approach [13] (or quantum trajectories) it is possible to understand why the dynamics
is so well described by notion of measurements and by the projection postulate [10, 11].

Instead of an ensemble of atoms we have considersthgle three-level V system,
with the same weak field driving thd) — |2) transition and laser pulses driving thB—
|3) transition as before. Taking the measurement point of view, the projection postulate
gives a quick and intuitive understanding what to expect, namely a stochastic sequence of
fluorescence bursts (light periods) and dark periods, as in figure 2. Their durations should
increase with decreasing distance between the laser pulses.

Taking the dynamical point of view, Bloch equations are not so convenient, but the
guantum jump approach is particularly well adapted to single systems. Using this approach
we have shown in this paper why, and for which parameter values, the simple projection
postulate prescription gives so highly accurate results. We have not only calculated
corrections to the projectile-postulate results, but we have also shown that if the\time
between the laser pulses becomes too short then the projection postulate can no longer be
applied. The quantum jump approach, however, can also handle theAimit- 0 and
yields convergence to the well known light and dark periods of the continuously driven
system [14, 19]. These dark periods are also called electron shelving since during this time
the system is predominantly i@). For an ensemble of many atoms different light and dark
periods will overlap, and as a result only a lower intensity of fluorescence will be seen.

If the duration of a probe pulse becomes too short the measurement picture is also not
applicable, but the quantum jump approach still is. In this case a numerical simulation is
easiest.
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In summary, we have demonstrated the usefulness of the projection postulate for the

stochastic behaviour of a single system. Our dynamical analysis also clearly shows that the
projection postulate is an idealization, sometimes even an over-idealization, and that in a
more precise treatment corrections arise. Experimentally, it should be possible to check our
results for a single ion or atom in a trap.
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