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Quantum Zeno effect and light–dark periods for a single
atom
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Institut für Theoretische Physik, Universität Göttingen, Bunsenstr. 9, D-37073 Göttingen,
Germany

Received 19 September 1996

Abstract. The quantum Zeno effect (QZE) predicts a slow-down of the time development
of a system under rapidly repeated ideal measurements, and experimentally this was tested
for an ensemble of atoms using short laser pulses for non-selective state measurements. Here
we consider such pulses for selective measurements on asingle system. Each probe pulse
will cause a burst of fluorescence or no fluorescence. If the probe pulses were strictly ideal
measurements, the QZE would predict periods of fluorescence bursts alternating with periods of
no fluorescence (light and dark periods) which would become longer and longer with increasing
frequency of the measurements. The non-ideal character of the measurements is taken into
account by incorporating the laser pulses in the interaction, and this is used to determine the
corrections to the ideal case. In the limit, when the time,1t , between the laser pulses goes to
zero, no freezing occurs but instead we show convergence to the familiar macroscopic light and
dark periods of the continuously driven Dehmelt system. An experiment of this type should be
feasible for a single atom or ion in a trap.

1. Introduction

The effect of an instantaneous measurement on a quantum mechanical system is usually
described by the projection postulate of von Neumann and Lüders§ according to which,
depending on the outcome of a measurement, the wavefunction of the system is projected
onto the respective eigenspaces of the observable under consideration. This is also called
reduction or collapse of the wavefunction under an ideal measurement; a more general
approach to measurements is taken in [4]. Using this concept and some fairly general
technical assumptions, Misra and Sudarshan [5] have investigated how a system is affected
by rapidly repeated ideal measurements at times1t apart. They found a slow-down of the
system’s time development and, in the limit1t → 0, a freezing of the state. This is called
the quantum Zeno effect (QZE). The basic reason for this is the fact that for short enough
times transition probabilities grow only quadratically with time, not linearly.

To test this effect, Itanoet al [6] performed an experiment with an ensemble of 5000
ions in a trap (see figure 1 for the relevant level structure, a V configuration). The time
development was given by a so-calledπ pulse of lengthTπ , tuned to the 1–2 transition

† E-mail address: beige@theorie.physik.uni-goettingen.de
‡ E-mail address: hegerf@theorie.physik.uni-goettingen.de
§ The projection postulate as currently used has been formulated by Lüders [1]. For observables with degenerate
eigenvalues his formulation differs from that of von Neumann [2]. It has been pointed out to us by A Sudbury
(private communication) that in the first edition of his book Dirac [3] defines observations which cause minimal
disturbance and which correspond to Lüder’s prescription; in later editions, however, this passage has been omitted.
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Figure 1. V system with (meta-) stable level two and Einstein coefficientA3 for level 3. �2

and�3 are the Rabi frequencies of the RF field and the probe laser, respectively.

frequency. Aπ pulse, here a radio frequency (RF) pulse, transforms the initial state|1〉
into |2〉 at the end of the pulse, if no measurements are performed. Following a proposal
by Cook [7] the population of the lower level was measured—non-selectively and without
actually recording the results—in rapid succession through the fluorescence induced by very
short pulses of a strong probe laser which couple level one with an auxiliary third level. The
population at timeTπ was then measured by a final pulse and recorded. The experimental
results were in good agreement with the predictions of the QZE.

The QZE and this experiment have not only aroused considerable interest in the literature
[8, 9], but the very relevance of the above experimental results for the QZE has given rise to
controversies. In particular the projection postulate and its applicability in this experiment
have been cast into doubt, and it was pointed out that the experiment could be understood
without recourse to the QZE by simply including the probe laser in the dynamics, e.g. in the
Bloch equations or in the Hamiltonian [9]. Since the Bloch equations describe the density
matrix of thecompleteensemble, including the probe pulse as an interaction in them gives,
however, no direct insight on how such a pulse acts on a single system.

In previous papers [10–12] we have therefore investigated how far a short laser pulse
realizes a selective measurement, i.e. on single systems, to which the projection postulate
can be applied. By means of the quantum jump approach (or Monte Carlo wavefunctions
or quantum trajectories) [13] and including the probe laser in the dynamics we showed
analytically that for a wide range of parameters such a short laser pulse acts, indeed, as
an effective level measurement to which the usual projection postulate applies with high
accuracy. The corrections to the ideal reductions and their accumulation overn pulses were
calculated. Our conclusion was that the projection postulate is an excellent pragmatic tool for
a quick and intuitive understanding of the slow-down of the time evolution in experiments
of this type and that it gives a good physical insight. But it is only approximate, and a
more detailed analysis has to take the corrections into account.

The experiment of [6] deals with the effect of repeated non-selective measurements
on an ensemble of systems and with the associated slow-down in the time evolution of the
density matrix of the total ensemble. It suggests itself to perform a similar experiment with
a single atom (or ion) in a trap, though not only for the duration of aπ pulse of the weak
driving field but instead for an arbitrarylong time. This might be regarded as an analog
of the idealized situation of rapidly repeated measurements on a single system. As studied
in [5, 7], in the idealized situation the outcome of the measurements will form a stochastic
sequence, in this case a sequence of states|1〉 and |2〉. The periods containing only|1〉’s
and|2〉’s will become increasingly long when the time1t between the ideal measurements
decreases, and in the limit1t → 0 one would have a single infinite sequence of|1〉’s
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or |2〉’s, i.e. freezing. With short pulses of a probe laser, considered as measurements,
one would therefore expect periods of fluorescence bursts (light periods, corresponding to
periods of|1〉’s) alternating with periods of no fluorescence (dark periods, corresponding to
periods of|2〉’s). Decreasing the time1t between the probe pulses should, in this picture,
make the light and dark periods longer.

The aim of this paper is to analyse how far this intuitive picture of the behaviour of
a single system is correct and to provide an understanding why the projection postulate
also works so well in this case. After a brief review of the ideal case we use our previous
results to calculate in section 3 the mean duration of the light and dark periods,TL and
TD, and compare them with the simple expression obtained by the projection postulate.
Our analysis will make it perfectly clear why the projection postulate gives such excellent
results for a wide range of parameters. If the time1t between the probe pulses becomes too
small, however, then the above simple picture breaks down. In section 4 we will explicitly
perform the limit1t → 0 and show that in contrast to the idealized caseTL andTD remain
finite. Indeed, we show convergence to the same expressions as for the famous light and
dark periods of the continuously driven Dehmelt system, which are also known under the
name of ‘electron shelving’ [14]. In the last section we discuss our results.

2. Brief review of an ideal case

If one performs rapidly repeated ideal measurements of an observableA with discrete
eigenvalues on a single system at times1t apart then the projection postulate predicts that
one will find the same value ofA in a row for some time, then another value for some
time, and so on. The length of these time intervals is stochastic, and their lengths increase
when1t decreases. For an observableA with non-degenerate discrete eigenvalues this can
be seen as follows. For simplicity we make a domain assumption further below. For the
general treatment see [5].

Let |a〉 be a state vector andPa ≡ |a〉〈a| the corresponding projector. At timest1, t2, . . . ,
with 1t ≡ ti+1 − ti , ideal measurements ofPa are performed, whose results are 1 or 0,
with the system afterwards in|a〉 or the subspace orthogonal to|a〉, respectively. This is
equivalent to asking whether the result of a measurement is|a〉 or perpendicular to|a〉, and
we denote the outcomea and⊥ instead of 1 and 0. We defineP⊥ = 1I− Pa. Let U(t, t ′)
be the time-development operator for the system. If, for initial state|a〉, one has founda
in n successive measurements, the resulting state is, up to normalization, given by

|ψa(tn, t0)〉 ≡ PaU(tn, tn−1)Pa . . . .PaU(t1, t0)|ψ〉 (1)

which of course is proportional to|a〉, and the probabilityPa(tn, t0; |ψ〉) for this is

Pa(tn, t0; |ψ〉) = ‖|ψa(tn, t0)〉‖2

= |〈a|U(t1, t0)|ψ〉|2
n∏
i=2

|〈a|U(ti, ti−1)|a〉|2.
(2)

If one has found⊥ in n successive measurements the state is

|ψ⊥(tn, t0)〉 = P⊥U(tn, tn−1)P⊥ · · ·P⊥U(t1, t0)|ψ〉 (3)

which in general is no longer proportional to a fixed vector, and the probability for this is
given by

P⊥(tn, t0; |ψ〉) = ‖|ψ⊥(tn, t0)〉‖2.
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To show that, for fixedt = n1t, Pa(t, t0) → 1|〈a|ψ〉|2 for 1t → 0 we assume for
simplicity that |a〉 is in the domain ofH . An expansion then gives [15]

|〈a|U(ti, ti−1)|a〉|2 = 1−1t2[〈a|HH |a〉 − 〈a|H |a〉2]/h̄2+ o(1t2)

= e−1t
2[〈a|H 2|a〉−〈a|H |a〉2]/h̄2

(1+ o(1t2))
(4)

where o(1t2) denotes terms which go to 0 faster than1t2. The expression〈a|HH |a〉 is
to be interpreted as||H |a〉||2. Equation (4) just states the well known fact that under the
above assumptions the transition probability from|a〉 to an orthogonal state goes as1t2 for
small1t [16]. From equations (2) and (4) one now obtains for the probability

Pa(t, t0; |ψ〉) = e−(n−1)1t2[〈a|H 2|a〉−〈a|H |a〉2]/h̄2
(1+ o(1t2))n−1|〈a|U(t1, t0)|ψ〉|2. (5)

With n = t/1t the first and second factor in equation (5) go to 1 for1t → 0, and the last
to |〈a|ψ〉|2.

Under the same conditions one can also show thatP⊥(t, t0; |ψ〉) → 1‖P⊥|ψ〉‖2 for
1t → 0. If P⊥ were a one- or finite-dimensional projector this would follow as before,
but in the general case another argument is needed. WithU1t ≡ U(1t, 0) one has from
equation (3)

P⊥(ti , t0; |ψ〉)− P⊥(ti+1, t0; |ψ〉) = ‖ |ψ⊥(ti , t0)〉‖2− ‖(1I− |a〉〈a|)U1t |ψ⊥(ti , t0)〉‖2

= 〈a|U1t |ψ⊥(ti , t0)〉〈ψ⊥(ti , t0)|U ∗1t |a〉.
(6)

Using |ψ⊥(ti , t0)〉〈ψ⊥(ti , t0)| 6 1I− |a〉〈a| one obtains

P⊥(ti , t0; |ψ〉)− P⊥(ti+1, t0; |ψ〉) 6 1− |〈a|U1t |a〉|2
= 1t2[〈a|HH |a〉 − 〈a|H |a〉2]/h̄2+ o(1t2)

(7)

by equation (4). Now one can estimate, witht = n1t + t0, ti = i1t + t0,

|P⊥(t, t0; |ψ〉)− ‖P⊥|ψ〉‖2| 6
n−1∑
i=1

|P⊥(ti+1, t0; |ψ〉)− P⊥(ti , t0; |ψ〉)|

+ ∣∣P⊥(t1, t0; |ψ〉)− ‖P⊥|ψ〉‖2
∣∣ . (8)

The sum is bounded by(n−1)1t2 constant+ (n−1)o(1t2), and for1t → 0 this vanishes,
as does the last term on the r.h.s. ForH = H(t) time dependent, the same argument goes
through with minor modifications.

For |a〉 in the domain ofH and initial state|ψ〉, this simple argument shows that for
rapidly repeated ideal measurement ofPa = |a〉〈a| the results freeze, for1t → 0, to |a〉
with probability |〈a|ψ〉|2 and toP⊥|ψ〉 with the complementary probability. In particular,
if |ψ〉 = |a〉, one stays in|a〉 for 1t → 0.

2.1. Mean length of periods

For a single system one has as results of the measurement alternating random sequences of
a’s and⊥’s (≡ not a) of the form

. . .⊥aa . . . a⊥⊥ . . .⊥a . . . . (9)

The length of ana sequence is defined as1t × number ofa’s. Similarly for⊥. We assume
that |a〉 is not an eigenvector ofH , since otherwise all measurements would give the same
result, either alla or all not a (⊥). The initial state for ana sequence is|a〉 and for an⊥
sequence it is

|φ⊥〉 ≡ P⊥U(1t, 0)|a〉/‖ · ‖ (10)

except at the beginning when it is|ψ〉.
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Starting with ana the probability to have exactlyn a’s in a row,n > 1, but not more,
is by equation (1) (witht0 = 0)

pa;n = ‖P⊥U(1t, 0)ψa(tn−1, 0; |a〉)‖2

= Pa(tn−1, 0; |a〉)− Pa(tn, 0; |a〉) (11)

and analogously

p⊥;n = P⊥(tn−1, 0; |φ⊥〉)− P⊥(tn, 0; |φ⊥〉). (12)

The mean durationTa and T⊥ of these sequences for a single system is then, in obvious
notation,

Ta,⊥ =
∞∑
n=1

n1t [Pa,⊥(tn−1)− Pa,⊥(tn)]

=
∞∑
n=0

1tPa,⊥(tn).

(13)

From equation (2) one obtains the exact result

Ta = 1t
∞∑
n=0

|〈a|U(1t, 0)|a〉|2n

= 1t

1− |〈a|U(1t, 0)|a〉|2 .
(14)

With equation (4) one obtains

Ta = 1

1t

{
h̄2

〈a|H 2|a〉 − 〈a|H |a〉2 + o(1t2)/1t2
}
. (15)

The second term in the brackets becomes negligible for small1t , and Ta diverges for
1t → 0. If |a〉 is in the domain ofH 2 then one can replace o(1tn) by O(1tn+1) where
the latter denotes terms of order at least1tn+1.

To obtain an explicit expression forT⊥ we assume for simplicity that the Hilbert space
is finite-dimensional (or thatH is bounded). Then one has

P⊥U(1t, 0)P⊥ = P⊥[1I − i1tH/h̄− 1
21t

2H 2/h̄2+O(1t3)]P⊥

= P⊥e−i1tP⊥HP⊥/h̄− 1
21t

2[P⊥H 2P⊥−(P⊥HP⊥)2]/h̄2

P⊥(1+O(1t3)).
(16)

Then, by equation (3)

P⊥(tn, 0; |ψ⊥〉) = 〈ψ⊥|P⊥e−n1t
2[P⊥H 2P⊥−(P⊥HP⊥)2]/h̄2

P⊥|ψ⊥〉(1+O(1t3)). (17)

From this and from equation (13) one now obtains

T⊥ = 1

1t
〈φ⊥| h̄2

P⊥H 2P⊥ − (P⊥HP⊥)2 |φ⊥〉 +O(1t). (18)

We note that if|a〉 is an eigenvector ofH then the denominators in equations (14) and (18)
vanish.

Example. We consider a single system with two stable levels one and two. The system
is driven in resonance by a classical electromagnetic wave, e.g. in the RF range. In the
interaction picture and with the usual rotating-wave approximation the Hamiltonian is given
by

H = h̄
2�2{|1〉〈2| + |2〉〈1|} (19)
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where�2, the so-called Rabi frequency, is proportional to the amplitude of the driving field
[17, 18]. The time-development operator is easily calculated as

U(t, t0) = cos1
2�2(t − t0)− i sin 1

2�2(t − t0){|1〉〈2| + |2〉〈1|}. (20)

From this one finds the transition probabilities

|〈2|U(t, 0)|1〉|2 = |〈1|U(t, 0)|2〉|2 = sin2 1
2�2t. (21)

For smallt this is quadratic int . If one now determines by repeated ideal measurements,
at times1t apart, whether one finds the system in state|1〉 or |2〉 one obtains a random
sequence of the form

. . .21. . .12. . .21. . . (22)

similar to (9). The mean durationT1 andT2 of the subsequences of 1’s and 2’s is given
by equation (14) with|a〉 replaced by|1〉 and |2〉, respectively, and one obtains with
equation (20)

T1 = T2 = 1t

sin2 1
2�21t

= 4

�2
21t
+O(1t). (23)

Note that T1 = T2 holds quite generally for a two-level system, as easily seen from
equation (14).

3. Realistic case: light and dark periods

We now consider a single three-levelV system as in figure 1 and assume the 1–2 transition
to be driven in resonance by classical electromagnetic RF radiation with Rabi frequency�2

and Hamiltonian as in equation (19).
We suppose that repeated measurements of level one are performed. Following [7, 6]

we assume that each measurement consists of a short laser (probe) pulse driving the 1–3
transition. When resonance fluorescence occurs then after the last photon emission at the
end of a probe pulse the system is in|1〉, and when no resonance fluorescence occurs then
the system was taken by [7, 6] to be in|2〉.

Experimentally one will then expect the following striking phenomenon. One will see
periods of fluorescence bursts alternating with dark periods, as in figure 2. The mean
duration of these light and dark periods should be given byT1,2 of equation (23), at least
approximately,

TL ∼= 4

�2
21t

TD ∼= 4

�2
21t

. (24)

These periods should become longer and longer with decreasing time1t between the probe
pulses.

In how far the above probe pulses do indeed lead to measurements of levels 1 and 2 and
to state reduction has recently been discussed by us in [10–12] by means of the quantum
jump approach [13]. With regards to reduction, it was shown that at the end of a probe
pulse and a short transitory time the state of the system is given either by a density matrix
extremely close, but not identical to|1〉〈1| if the system has emitted photons, or by a density
matrix very close to|2〉〈2| if no photons were emitted. After the last photon emission during
a probe pulse the system is indeed in its ground state, but then it may acquire a small|2〉
component until the end of the probe pulse; its|3〉 component will decay during a short
transitory time after the pulse. When no photons are emitted the finite duration of the probe
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Figure 2. Figure 2. Stochastic alternating light and dark periods. The lines mark times when
the atom is found in state|1〉 and emits a burst of light.Tπ = π/�2 is the length of aπ pulse.

pulse is responsible for a small|1〉 component. Hence, there will be small deviations from
ideal measurements, which will lead to small corrections to the above results.

For a probe pulse to constitute an effective measurement its duration1τp has to satisfy
[10]

1τp� max{A−1
3 , A3/�

2
3}. (25)

In addition to this one needs

εp ≡ �2A3

�2
3

� 1 εR ≡ �2

�3
� 1 εA ≡ �2

A3
� 1. (26)

If the time1t between two probe pulses satisfies

1t � A−1
3 and (�21t)

2� ε (27)

one can directly employ the results of [11]. The first of these conditions ensures that the|3〉
component has vanished before the next pulse, the second that there are only two possible
atomic states at the end of a pulse. In case of no emission the pulse effectively projects the
system onto

ρ̃0
P =

(
0 −iεp

iεp 1

)
+O(ε2) (28)

in the |1〉 − |2〉 subspace, and in case of photon emission onto

ρ̃>P =
1

A2
3+ 2�2

3+ εp�21τpA
2
3

×
(

A2
3+ 2�2

3 iεpA
2
3− i

2εA�
2
3

−iεpA
2
3+ i

2εA�
2
3 εp�21τpA

2
3

)
+O(ε2). (29)

For arbitrary initial density matrixρ the probability for no photon emission during a probe
pulse is

P0(1τp; ρ) = ρ22− εp�21τpρ22+ 2εp Im ρ12− 2εR Reρ23+O(ε2). (30)

Now letp be the (conditional) probability to haveno fluorescence during a pulse under
the condition that therehad been fluorescence during the preceding pulse. Byq we denote
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the probability to haveno fluorescence during a pulse under the condition that there had been
no fluorescence during the preceding pulse. In short,p andq are transition probabilities,

p : yes→ no q : no→ no. (31)

These are the same probabilities as for the transitions fromρ̃>P after a pulse toρ̃0
P after the

next pulse and from̃ρ0
P to ρ̃0

P, respectively. With

c ≡ cos�21t s ≡ sin�21t (32)

one has [11]

p = 1

2
(1− c)+ εp

{
2s
A2

3+�2
3

A2
3+ 2�2

3

+ 1

2
�21τpc

3A2
3+ 2�2

3

A2
3+ 2�2

3

−1

2
�21τp

}
− 1

2
εAs

�2
3

A2
3+ 2�2

3

+O(ε2) (33)

q = 1
2(1+ c)− εp{2s + 1

2�21τp(1+ c)} +O(ε2). (34)

It should be noted that for small1t

p = 1
4(�21t)

2+O(ε) (35)

q = 1− p +O(ε) (36)

and thatq 6= 1− p to first order inε.
The probability for a period of exactlyn consecutive probe pulseswith fluorescence

among all such light periods is(1−p)n−1p. The mean durationTL of light periods is then

TL =
∞∑
n=1

(1τp+1t)n(1− p)n−1p (37)

which gives

TL = 1τp+1t
p

. (38)

Similarly one finds for the dark periods

TD = 1τp+1t
1− q . (39)

Since 1− q is close, but not equal, top one hasTL ≈ TD but no longer equality. For the
parameters of [6] the difference is very small.

Inserting the approximate values ofp andq from equations (35) and (36) one obtains

TL ≈ TD ≈ 1τp+1t
1t

4

�2
21t

. (40)

If the duration1τp of the probe pulse is much smaller than the time1t between the pulses
this agrees extremely well with the result for ideal measurements obtained by the projection
postulate in equations (23) and (24) above.

It is not possible to take the limit1t → 0 in equation (40) since for the above derivation
to be valid1t has to satisfy1t � A−1

3 . This limit will be studied in the next section, and
we will show thatTL andTD do not grow indefinitely.
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4. The limit of vanishing distance between probe pulses:∆t → 0

To perform the limit1t → 0 some extra steps are needed. For small1t the population
of level three does not vanish completely before the beginning of the next probe pulse.
Therefore, in case of fluorescence, one has no longer a good reduction to|1〉〈1| and the
pulse cannot be regarded as affecting a measurement of levels one and two. In this case
the treatment of the last section has to be made more precise by incorporating the possibly
only partial decay of level three.

Right at the end of a probe pulse—without transient decay time—the system is, as
shown in [11], either in

ρ̃0 =
( 0 −iεp 0

iεp 1 −εR

0 −εR 0

)
+O(ε2) (41)

in case of no photon emission, or in

ρ̃> = 1

A2
3+ 2�2

3+ εpA
2
3�21τp

(
A2

3+�2
3 iεpA

2
3 iA3�3

−iεpA
2
3 εpA

2
3�21τp εR(A

2
3+�2

3)

−iA3�3 εR(A
2
3+�2

3) �2
3

)
+O(ε2)

(42)

in case of fluorescence, except possibly for thefirst pulse of a light period. If the second
condition in equation (27) is not satisfied by1t then the state at the beginning of the first
pulse in a light period is very close toρ0, and therefore the statẽρ> after the first pulse
has to be calculated with initial state of the formρ0+O(ε). For such a state, however, one
has 1− P0 = O(ε), by equation (30), and then O(ε2) is replaced by O(ε) in equation (42)
for small1t . Thus, if the second condition in equation (27) does not hold the first pulse in
a light period has, in principle, to be treated differently from the rest.

The transition probabilities from equation (31) are now denoted byp̃ and q̃ and are
given by

p̃ = p − 2εRs
�3A3

A2
3+ 2�2

3

e−
1
2A31t +O(ε2) (43)

q̃ = q +O(ε2) (44)

with p andq as in equations (33) and (34) and1t arbitrary. However, for the first pulse in
a light periodp̃ is replaced byp̃ + O(ε). One sees that, for1t � A−1

3 , p̃ goes over into
p. Equation (37) is replaced by

TL = (1τp+1t)(p̃ +O(ε))+
∞∑
n=2

(1τp+1t)n(1− p̃ +O(ε))(1− p̃)n−2p̃ (45)

which gives

TL = 1τp+1t
p̃

(46)

up to terms of relative orderε. For TD one obtains now

TD = 1τp+1t
1− q̃ . (47)

Now one performs the limit1t → 0 and obtains

lim
1t→0

p̃ = εp�21τp
A2

3

A2
3+ 2�2

3

+O(ε2)

lim
1t→0

q̃ = 1− εp�21τp+O(ε2).

(48)



1332 A Beige and G C Hegerfeldt

Inserting this into the expressions forTL andTD gives, withεp = �2A3/�
2
3,

lim
1t→0

TL = A2
3+ 2�2

3

�2
2A

3
3

�2
3

lim
1t→0

TD = �2
3

�2
2A3

(49)

up to terms of relative orderε/�21τp.
First of all, the limits are finite, as physically expected. Furthermore, in the limit1t → 0

both driving fields are continuously on and in this case the existence of macroscopic light
and dark periods is well known under the name ‘electron shelving’ [14]. The mean duration
of these periods has been calculated [19] and the result is the same as in equation (49).
Thus, the continuously driven case is recovered in the limit1t → 0.

5. Conclusion

When applied to an ensemble of systems the QZE predicts a slow-down in the time-
development of the density matrixρ(t) under repeated ideal measurements. An experiment
to test this was performed by Itanoet al [6] in which repeated state measurements were car-
ried out on a system with two stable levels|1〉 and|2〉. The measurements were implemented
by short laser pulses driving the transition from the ground state|1〉 to an auxiliary rapidly
decaying level|3〉. Occurrence or absence of fluorescence means a system is in|1〉 or |2〉,
respectively. The experimental results indeed showed a slow-down of the time-development
of ρ(t) in good agreement with the QZE. Subsequently it was pointed out [9] that this be-
haviour could be understood without recourse to any measurement theory. Indeed, one can
simply consider the probe laser as part of the dynamics and incorporate it in the Hamiltonian
or in the Bloch equations forρ(t), never speaking of measurements. Using the quantum
jump approach [13] (or quantum trajectories) it is possible to understand why the dynamics
is so well described by notion of measurements and by the projection postulate [10, 11].

Instead of an ensemble of atoms we have considered asingle three-level V system,
with the same weak field driving the|1〉 − |2〉 transition and laser pulses driving the|1〉–
|3〉 transition as before. Taking the measurement point of view, the projection postulate
gives a quick and intuitive understanding what to expect, namely a stochastic sequence of
fluorescence bursts (light periods) and dark periods, as in figure 2. Their durations should
increase with decreasing distance between the laser pulses.

Taking the dynamical point of view, Bloch equations are not so convenient, but the
quantum jump approach is particularly well adapted to single systems. Using this approach
we have shown in this paper why, and for which parameter values, the simple projection
postulate prescription gives so highly accurate results. We have not only calculated
corrections to the projectile-postulate results, but we have also shown that if the time1t

between the laser pulses becomes too short then the projection postulate can no longer be
applied. The quantum jump approach, however, can also handle the limit1t → 0 and
yields convergence to the well known light and dark periods of the continuously driven
system [14, 19]. These dark periods are also called electron shelving since during this time
the system is predominantly in|2〉. For an ensemble of many atoms different light and dark
periods will overlap, and as a result only a lower intensity of fluorescence will be seen.

If the duration of a probe pulse becomes too short the measurement picture is also not
applicable, but the quantum jump approach still is. In this case a numerical simulation is
easiest.
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In summary, we have demonstrated the usefulness of the projection postulate for the
stochastic behaviour of a single system. Our dynamical analysis also clearly shows that the
projection postulate is an idealization, sometimes even an over-idealization, and that in a
more precise treatment corrections arise. Experimentally, it should be possible to check our
results for a single ion or atom in a trap.
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